Примеры решения задач по сопромату

Нужна помощь в решении задач? Могу помочь😉 Здесь подробнее.

На этой странице собраны ссылки на примеры решения задач по сопромату (сопротивлению материалов), которые размещены на сайте – ssopromat.ru. Я решил собрать все примеры в одном месте, со всех статей, для удобства навигации и поиска нужного решения задачи. Эта страница будет постоянно обновляться, по мере развития сайта и публикации новых примеров.

Навигация по примерам

Для поиска нужных примеров, можешь воспользоваться данными ссылками:

Примеры решения задач на растяжение (сжатие)

В этом разделе собраны ссылки на примеры решения задач на растяжение (сжатие). Здесь можно найти примеры построения эпюр при чистом растяжении или сжатии, а также различные прочностные расчёты при этом виде деформации.

Построение эпюр

Здесь можно найти примеры построения эпюр: продольных сил, нормальных напряжений и углов закручивания (углов поворотов) поперечных сечений для стержней, работающих на чистое растяжение (сжатие).

Задача №1

Для стального ступенчатого бруса (E=2·105 МПа), загруженного силами F1 = 5 кН, F2 = 8 кН требуется построить эпюры: продольных сил, нормальных напряжений и осевых перемещений поперечных сечений. Площадь поперечного сечения первой ступени равна 2 см2, второй — 4 см2.

Расчётная схема ступенчатого стержня, загруженного сосредоточенными силами

Задача №2

Для ступенчатого бруса требуется построить эпюры: продольных сил, нормальных напряжений и осевых перемещений поперечных сечений. Модуль упругости: E=2·105 МПа, нагрузка: F1 = 5 кН, F2 = 8 кН, q = 2 кН/м, площади поперечных сечений: A1 = 2 см2, A2 = A3= 4 см2.

Расчётная схема стержня с распределённой нагрузкой работающего на растяжение (сжатие)

Расчеты на прочность

В этом разделе можно найти ссылки на примеры расчётов на прочность при растяжении (сжатии): проверочные и проектировочные.

Задача №1

Для стального стержня, нагруженного сжимающей силой F = 100 кН, с размерами: d1 = 50 мм, d2 = 70 мм, необходимо проверить прочность, если σт = 260 МПа, nт = 2.

Задача №2

Для бруса, загруженного силами: F1 = 60 кН, F2 = 80 кН необходимо подобрать размеры поперечных сечений (d1, d2), если [σ] = 160 МПа. Расчётные диаметры округлить по ГОСТ 6636-69 (Ra40) до ближайших больших значений.

Примеры решения задач на кручение

Здесь можно найти ссылки на примеры решения задач, связанные с чистым кручением, где рассчитываются и строятся эпюры и проводятся прочностные расчёты для валов.

Построение эпюр

В этих примерах рассчитываются и строятся эпюры при чистом кручении: крутящих моментов, максимальных касательных напряжений и углов закручивания (углов поворотов) поперечных сечений.

Задача №1

Для ступенчатого стального стержня (G = 8 · 1010 Па) загруженного вращающими моментами: M1 = 30 кН·м, M2 = 70 кН·м, M3 = 90 кН·м, требуется построить эпюры крутящих моментов, максимальных касательных напряжений и углов закручивания.

Расчётная схема стержня, работающего на кручение

Примеры решения задач на поперечный изгиб

Здесь будут публиковаться ссылки на примеры решения задач, связанных с поперечным (плоским) изгибом. В этом разделе можно найти примеры определения опорных реакций, расчёт и построение эпюр для статически определимых балок и рам, а также различные прочностные расчёты данных элементов конструкций.

Определение реакций опор

В этом разделе собраны ссылки на примеры определения реакций опор для плоских статически определимых систем.

Задача №1

Для двухопорной балки, загруженной посередине пролёта сосредоточенной силой (F = 2 кН), требуется определить реакции в опорах и выполнить проверку решения.

Расчётная схема балки, загруженной сосредоточенной силой

Задача №2

Для балки на двух опорах, загруженной распределённой нагрузкой (q) с интенсивностью – 10 кН/м, требуется найти опорные реакции и провести проверку найденных реакций.

Расчётная схема балки, загруженной распределённой нагрузкой

Задача №3

Для консольной балки, загруженной распределённой нагрузкой (q = 5 кН/м) и силой (F = 2 кН) направленной под углом (α = 30°) к продольной оси балки, необходимо найти реакции в жёсткой заделке и провести проверку решения.

Расчётная схема консольной балки с силой приложенной под углом

Задача №4

Для плоской статически определимой рамы, загруженной нагрузкой: F1 = 2 кН, F2 = 4 кН, M = 3 кН∙м, q = 2 кН/м, необходимо рассчитать реакции в опорах и проверить решение.

Расчётная схема рамы, загруженная всеми типами нагрузок

Построение эпюр

В этом разделе собраны ссылки на примеры построения эпюр при поперечном изгибе – поперечных сил и изгибающих моментов. В примерах строятся эпюры для статические определимых плоских систем – балок и рам.

Задача №1

Для консольной балки, к которой приложены нагрузки: M = 10 кН·м; F1 = 5 кН; F2 = 15 кН, необходимо рассчитать и построить эпюры поперечных сил и изгибающих моментов.

Расчётная схема балки, для которой нужно построить эпюры

Задача №2

Для двухопорной балки, загруженной распределённой нагрузкой (q = 5 кН/м), моментом (M = 10 кН·м) и силой (F = 12 кН) требуется построить эпюры поперечных сил и изгибающих моментов.

Расчётная схема двухопорной балки, для которой нужно построить эпюры

Определение перемещений

В этом разделе собраны задачи на определение перемещений при поперечном (прямом) изгибе: углы поворотов и прогибов. А также расчеты на жесткость.

Задача №1

Для стальной балки (E = 2 · 105 Па), загруженной распределенной нагрузкой (q = 9 кН/м) требуется подобрать двутавровое сечение по ГОСТ 8239-89 и выполнить проверку на жесткость. При необходимости подобрать другое сечение из условия жесткости.

Расчетная схема балки для расчета на жесткость

Примеры расчёта геометрических характеристик

В этом разделе можно найти ссылки на примеры расчётов геометрических характеристик плоских сечений (фигур) – положение центра тяжести, моментов инерции, моментов сопротивления.

Сечения из простых фигур

Здесь собраны ссылки на расчёты плоских сечений, состоящих из простейших фигур.

Задача №1

Для плоского сечения, состоящего из простых фигур, необходимо определить положение центра тяжести.

Задача №2

Для симметричного сечения, имеющего две оси симметрии, необходимо определить положение центра тяжести, а также определить осевые моменты инерции.

1 комментарий

  1. Мохамед:

    хорошо

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *