Перемножение эпюр по правилу, методу или способу Мора-Верещагина: формула, таблица, примеры и задачи

Привет! В этой статье будем учиться определять перемещения поперечных сечений при изгибе: прогибы и углы поворотов, по методу (способу, правилу) Верещагина. Причем, это правило широко используется не только при определении перемещений, но и при раскрытии статической неопределимости систем по методу сил. Я расскажу, о сути этого метода, как перемножаются эпюры различной сложности и когда выгодно пользоваться этим методом.

Что нужно знать для успешного освоения материалов данного урока?
Обязательно нужно знать, как строится эпюра изгибающих моментов, т.к. в этой статье будем работать с данной эпюрой.

Верещагин и его метод, правило или способ

А.К. Верещагин в 1925г. предложил более простой способ решения (формулы) интеграла Мора. Он предложил вместо интегрирования двух функций перемножать эпюры: умножать площадь одной эпюры на ординату второй эпюры под центром тяжести первой. Этим способом можно пользоваться, когда одна из эпюр прямолинейна, вторая может быть любой. Кроме того, ордината берется прямолинейной эпюры. Когда эпюры обе прямолинейны, то тут совсем не важно, чью брать площадь, а чью ординату. Таким образом, эпюры по Верещагину перемножаются по следующей формуле:​

\({ V={ M }_{ F } }\cdot \overline { M } ={ \omega }_{ C }\cdot { \overline { M } }_{ C } \)

Проиллюстрировано перемножение эпюр по Верещагину: C — центр тяжести первой эпюры, ωс — площадь первой эпюры, Mc — ордината второй эпюры под центром тяжести первой.

Площадь и центр тяжести эпюр

При использовании метода Верещагина, берется не сразу вся площадь эпюры, а частями, в пределах участков. Эпюра изгибающих моментов расслаивается на простейшие фигуры.

Любую эпюру можно расслоить всего на три фигуры: прямоугольник, прямоугольный треугольник и параболический сегмент.

Поэтому именно с этими фигурами будем дальше работать. Напомню, как вычислить их площадь и где у них находится центр тяжести. Все формулы и размеры оформил в виде таблицы:

На рисунке показаны размеры простейших фигур, используемых при перемножении эпюр по правилу, методу или способу Верещагина, а также их площади и положение центра тяжести.

Перемножение эпюр по Верещагину

В этом блоке статьи покажу частные случаи перемножения эпюр по Верещагину.

Прямоугольник на прямоугольник

Проиллюстрировано перемножение прямоугольника на прямоугольник по правилу Верещагина.

\( { V={ M }_{ F } }\cdot \overline { M } ={ b\cdot h\cdot c } \)

Прямоугольник на треугольник

Проиллюстрировано перемножение прямоугольника на треугольник по методу Верещагина.

\( { V={ M }_{ F } }\cdot \overline { M } ={ b\cdot h\cdot \frac { 1 }{ 2 } \cdot c } \)

Треугольник на прямоугольник

Проиллюстрировано перемножение треугольника на прямоугольник по способу Верещагина.

\( { V={ M }_{ F } }\cdot \overline { M } ={ \frac { 1 }{ 2 } \cdot b\cdot h\cdot c } \)

Сегмент на прямоугольник

Проиллюстрировано перемножение параболического сегмента на прямоугольник по правилу Верещагина.

\( { V={ M }_{ F } }\cdot \overline { M } ={ \frac { q\cdot { l }^{ 3 } }{ 12 } \cdot c } \)

Сегмент на треугольник

Проиллюстрировано перемножение параболического сегмента на прямоугольный треугольник по методу Верещагина.

\( { V={ M }_{ F } }\cdot \overline { M } ={ \frac { q\cdot { l }^{ 3 } }{ 12 } \cdot \frac { 1 }{ 2 } \cdot c } \)

Частные случаи расслоения эпюр на простые фигуры

В этом блоке статьи покажу частные случаи расслоения эпюр на простые фигуры, для возможности их перемножения по Верещагину.

Прямоугольник и треугольник

Разбивка участка эпюры на прямоугольных и треугольник, для перемножения его по правилу Верещагина.

Два треугольника

Расслоение участка эпюры на два прямоугольных треугольника, для перемножения его по способу Верещагина.

Два треугольника и сегмент

Разбивка участка эпюры на два прямоугольных треугольника и параболический сегмент, для перемножения его по методу Верещагина.

Треугольник, прямоугольник и сегмент

Разбивка участка эпюры на прямоугольный треугольник, прямоугольник и параболический сегмент, для перемножения его по правилу Верещагина.

Пример определения перемещений: прогибов и углов поворотов по Верещагину

Расчетная схема балки, для которой требуется определить перемещения сечений: прогибы и углы поворотов.

Теперь предлагаю рассмотреть конкретный пример с расчетом перемещений поперечных сечений: их прогибов и углов поворотов. Возьмем стальную балку, которая загружена всевозможными типами нагрузок и определим прогиб сечения C, а также угол поворота сечения A.

Построение эпюры изгибающих моментов

В первую очередь, рассчитываем и строим эпюру изгибающих моментов:

Построение эпюры изгибающих моментов для рассчитываемой балки.

Построение единичных эпюр моментов

Теперь для каждого искомого перемещений необходимо приложить единичную нагрузку (безразмерную величину равную единице) и построить единичные эпюры:

  • Для прогибов, прикладываются единичные силы.
  • Для углов поворотов, прикладываются единичные моменты.
Причем направление этих нагрузок не важно! Расчет покажет верное направление перемещений.

Например, после расчета величина прогиба получилась положительной, это значит, что направление перемещения сечения совпадает с направлением ранее прикладываемой силы. Тоже самое касается и углов поворотов.

Показаны построенные единичные эпюры от единичных нагрузок, приложенных в местах искомых перемещений.

 

Перемножение участков эпюры по Верещагину

После проведения всех подготовительных работ: построения эпюры изгибающих моментов, расслоения ее на элементарные фигуры и построения единичных эпюр от нагрузок, приложенных в местах и направлении искомых перемещений, можно переходить непосредственно к перемножению соответствующих эпюр.

Как уже было написано выше, линейные эпюры можно перемножать в любом порядке, то есть брать площадь любой эпюры: основной или единичной, и умножать на ординату другой. Но обычно, чтобы не путаться в расчетах, площади берут основной эпюры изгибающих моментов, в этом уроке будем придерживаться этого же правила.

Определение прогиба сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем прогиб сечения C по методу Мора — Верещагина:

\[ { V }_{ C }=\frac { 1 }{ E{ I }_{ x } } (\frac { 1 }{ 2 } \cdot 6\cdot 3\cdot \frac { 2 }{ 3 } \cdot 2+\frac { 1 }{ 2 } \cdot 6\cdot 2\cdot \frac { 2 }{ 3 } \cdot 2)=\frac { 20кН{ м }^{ 3 } }{ E{ I }_{ x } } \]

Представим, что рассчитываемая балки имеет поперечное сечение в виде двутавра №24 по ГОСТ 8239-89, тогда прогиб балки будет равен:

\[ { V }_{ C }=\frac { 20кН{ м }^{ 3 } }{ E{ I }_{ x } } =\frac { 20\cdot { 10 }^{ 9 }Н\cdot { см }^{ 3 } }{ 2\cdot { 10 }^{ 7 }\frac { Н }{ { см }^{ 2 } } \cdot 3460{ см }^{ 4 } } =0.289см \]

Определение угла поворота сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем угол поворота сечения C по правилу Мора — Верещагина:

\[ { \theta }_{ C }=\frac { 1 }{ E{ I }_{ x } } (-\frac { 1 }{ 2 } \cdot 6\cdot 3\cdot \frac { 1 }{ 3 } \cdot 1)=-\frac { 3кН{ м }^{ 2 } }{ E{ I }_{ x } } \]

\[ { { \theta } }_{ C }=-\frac { 3кН{ м }^{ 2 } }{ E{ I }_{ x } } =-\frac { 3\cdot { 10 }^{ 7 }Н\cdot { см }^{ 3 } }{ 2\cdot { 10 }^{ 7 }\frac { Н }{ { см }^{ 2 } } \cdot 3460{ см }^{ 4 } } =-0.0004рад \]

Для закрепления пройденного материала рекомендую изучить примеры, где рассмотрены различные случаи расслоения и перемножения эпюр.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить